Corona Theorem

نویسندگان

  • Jie Xiao
  • JIE XIAO
چکیده

For p ∈ (0, 1), let Q p be the subspace consisting of Möbius bounded functions in the Dirichlet-type space. Based on the study of the multipliers in Q p , we establish the corona theorem for Q p .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Construction of Riemann Surfaces with Corona

equivalently [Gar,VIII.2], the corona M(X) \ ι(X) is empty. (Here M(X) is the maximal ideal space of the algebra H∞(X) of bounded holomorphic functions on X and ι is the natural inclusion X ↪→ M(X).) If X does not satisfy the corona theorem then X may be said to have corona. Riemann surfaces known to satisfy the corona theorem include the unit disk [Car], bordered Riemann surfaces [All] [Sto], ...

متن کامل

The Corona Theorem for the Drury-arveson Hardy Space and Other Holomorphic Besov-sobolev Spaces on the Unit Ball in C

We prove that the multiplier algebra of the Drury-Arveson Hardy space H n on the unit ball in C n has no corona in its maximal ideal space, thus generalizing the famous Corona Theorem of L. Carleson in the unit disk. This result is obtained as a corollary of the Toeplitz Corona Theorem and a new Banach space result: the Besov-Sobolev space B p has the ”baby corona property” for all 0 ≤ σ < n p ...

متن کامل

Matrix-valued Corona Theorem for Multiply Connected Domains

Let D ⊂ C be a bounded domain, whose boundary B consists of k simple closed continuous curves and H(D) be the algebra of bounded analytic functions on D. We prove the matrix-valued corona theorem for matrices with entries in H(D).

متن کامل

Corona Theorem for H∞ on Coverings of Riemann Surfaces of Finite Type

In this paper continuing our work started in [Br1]-[Br3] we prove the corona theorem for the algebra of bounded holomorphic functions defined on an unbranched covering of a Caratheodory hyperbolic Riemann surface of finite type.

متن کامل

An operator corona theorem for a class of subspaces of H

Let E, E∗ be separable Hilbert spaces. If S is an open subset of T, then AS(L (E, E∗)) denotes the space of all functions f : D ∪ S → L (E, E∗) that are holomorphic in D, and bounded and continuous on D ∪ S. In this article we prove the following main results: 1. A theorem concerning the approximation of f ∈ AS(L (E, E∗)) by a function F that is holomorphic in a neighbourhood of D∪S and such th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000